Software Lifecycle Themes for JPL Mission Data System (MDS)

Anne Elson
Jet Propulsion Laboratory
California Institute of Technol
4800 Oak Grove Drive
Pasadena, CA 91109-8099

Abstract

Today there are many small deep space missions in progress or in ¢

Laboratory. These missions have short lead times and small budget
and technology goals. The short development times, the small fund

ogy

onception at the Jet Propulsion
s while still pursuing ambitious science
ing profiles and the overlapping

schedules of these new missions preclude the intensive, one-of-a-kind software development, maintenance,
and operations efforts that were possible during the era of the big missions like Galileo and Cassini. How

the laboratory develops, maintains and operates mission software in
concurrent better, faster, and cheaper (BFC) missions will be crucia
The Mission Data System Project (MDS) team is developing core n

this new environment of multiple
1 to the success of these new missions.
nission data system software for a group

of the new BFC missions. As part of this effort the MDS team is piloting the use of a number of state-of-
the art software development, maintenance and operations approaches and tools. This paper describes

MDS software lifecycle strategies and tools and the ways in which
development, maintenance and operations efforts at the laboratory.
the MDS software lifecycle approach can contribute to the success

Extended Abstract

Mission Data System Overview
In April of 1998 the Jet Propulsion Laboratory initiated the Mission
project is chartered with rethinking the entire mission software lifeg
flight, ground and test data system architecture for space missions.
number of architectural themes. These themes and how they will ¢
cheaper missions are discussed in a related conference paper “Soft
Mission Data System”. The MDS software system will include a ¢
test software capabilities that mission customers typically need. Ad
partially fleshed out software capabilities (frameworks) and some e
capabilities. These frameworks and example implementations will
to be mission unique or have mission unique aspects. Customer mi
system by using or adapting MDS reference examples and/or by fill
frameworks to meet their own mission specific needs.

The MDS system will provide mission software capabilities that are
capabilities of recent JPL deep space missions. Additionally MDS
innovative design concepts into MDS software that will result in a
software capabilities for current and for future mission customers.
software product that enables spacecraft for deep space missions t

0
operate. Another is to provide a unified flight ground software sst

software capabilities between the ground system and the spacecraft,
as spacecraft trajectory correction determination may depend upon
mission and could migrate from the ground to the spacecraft as am
another MDS goal is to produce software that is both reusable and

MDS Software Lifecycle Approach Overview

A lifecycle model provides a set of development guidelines to the d
development phases and the work products (artifacts) to be produce
structure and standardization (predictability) to an activity that ofte
unpredictable. The MDS software lifecycle can be viewed as a set
associated set of inner loops. The MDS project traverses one cycle

these differ from past software
Additionally this paper discusses how
of the new BFC missions.

Data System Project (MDS). This
ycle. MDS has proposed a unified
This architecture is characterized by a
ontribute to the success of better, faster,
ware Architectural Themes in the

ore set of standard flight, ground and
ditionally it will contain a set of
xample implementations of these

be for capabilities that are more likely
ssions will build upon the MDS core
ling in and building upon the relevant

> equivalent to mission software

team is incorporating a set of new and
set of new, and/or expanded mission
One of the team’s goals is to produce a
be both more autonomous and easier to
em that facilitiates movement of

. Location of software capabilities such
the needs and constraints of a particular
ission’s needs changed over time. Yet
adaptable for many different missions.

evelopers. It identifies a set of

>d in each. The model helps to bring

n appears to be chaotic and

nested loops: one outer loop and an

of its outer loop and multiple cycles of




its inner loops to produce MDS flight, ground and test software for
project’s OOA/OOD consultant, Bruce Douglass, promotes a spiral

iterative proto-typing in his forthcoming book “Rapid Object-Orien

L single mission customer. The
development lifecycle model with
ed Process for Embedded Systems”.

In the Douglass model developers repeat a set of major lifecycle phases multiple times. During the earliest
iterations of this lifecycle developers implement a complete but thin version of the entire system. All
system interfaces are defined and implemented but internals of many of software components attached to
these interfaces are missing or only sketchily implemented. During each subsequent iteration of the
lifecycle development teams increase the capabilities of the components they own in the evolving software
system. Work products (artifacts) grow in their completeness and quality until all agreed upon system

requirements and constraints are achieved (or re-negotiated). The
proto-typing in its inner loop cycles.

DS lifecycle model includes iterative

In the MDS lifecycle the outer loop of the lifecycle maps to the management and software system

engineering activities that the MDS team will perform to produce a

n MDS system for a single customer.

The outer loop divides into 4 phases: feasibility, elaboration, construction and transition. The MDS outer
loop is primarily incremental but phases overlap. The outer loop includes requirements and systems

analysis, system design activities, system test and validation activit

es, and system maintenance activities.

MDS inner loop activities and phases closely follow Douglass’ software lifecycle model. For each circuit
of the MDS outer loop MDS development teams will complete multiple iterations (cycles) of a set of
associated inner loops. Each MDS inner loop represents one software domain within the current MDS
development effort. An inner loop is divided into 3 phases of software development: analysis and design,
implementation, and evaluation and test. An MDS development team responsible for inner loop activities

will traverse an inner loop cycle muitiple times during one cycle of
may run asynchronously to one another part of the time. During inn
some planned, periodic alignments of inner loop completions acros
referred to as synchronization points). These will occur when a cap
coordination across teams or when system test schedules require th
capabilities to the project for system wide integration and test.

The MDS team is using object oriented analysis and design techniq
Modeling Language) to capture their analysis and design decisions
are several OOA/OOD software case tools available commercially.
tool called Rhapsody (this tool is produced by I-Logix). Using UM
oriented analysis and design decisions as a series of models within
consultant, Bruce Douglass, defines a system mode] as “an organiz
abstractions that collaborate to achieve a system description at a de
Thoughout an MDS system lifecycle the MDS team develops and/d
The MDS software team will develop analysis models, design mod
testing models. Each model is another view of the underlying syste
views.

The remainder of this paper will discuss a number of software lifec
team’s use of OOA/OOD methodologies. 1t will discuss how the tg
the team to verify and maintain consistency between work products
iteration of an MDS lifecycle. It will discuss how OOA/OOD in ¢
enables the team to produce executable models of the underlying sy
will discuss how the MDS lifecycle approach de-couples mission s
hardware development, and promotes the treatment of software as g
will discuss how this approach can contribute to the success of BF(
how the MDS lifecycle approach promotes software reuse and adaj
OOA/OOD approach in conjunction with good metrics collection ¢
the software lifecycle process more predictable and consistent. It 1
methodologies in conjunction with a case tool that auto-generates ¢
software development times once the MDS team has a library of re
place.

the MDS outer loop. Inner loop cycles
er loop iterations there will also be

s multiple software domains (sometimes
ability crosses domains and requires

e delivery of new integrated software

ues. The team uses UML (Unified

within an OOA/OQD case tool. There
The MDS team has chosen to use a

L MDS team captures their object

their case tool. The team’s OOA/OOD

ed, internally-consistent set of

sired level of detail and maturity.”

r refines and updates system models.

els, translation (source code) models and

m and is not independent of the other

ycle themes that are a result of the MDS
ol and OOA/OOD methodologies help
as the team moves through one
onjunction with the Rhapsody case tool
'stem throughout its development. It
pftware development from flight

1 single system within the mission. It

" missions at the lab. It will discuss

station. It will discuss how the

an reduce development risk by making
will discuss how OOA/OOD
ode can considerably shorten mission

~usable analysis and design models in




